
October 2004 www.stsc.hill.af.mil 19

It was a cold, gloomy night in October.
Outside the fog was so thick you could

not see your hand in front of your face.
Inside was even worse. Joe walked out of
the conference room in a daze. He tried to
remember what had happened but it all
seemed like such a blur. The throbbing in
his head grew even stronger. He hurried
down the hall to the men’s room. His
thoughts were spinning. He asked himself,
“What am I going to do?”

Joe had just learned the project he was
working on would require more overtime.
He kept thinking of how his wife had
threatened to leave him just last week if he
could not spend more time with her and
the kids; in fact, he had not seen his kids
in weeks. By the time he got home, they
were in bed. Even when he did see them,
he was so tired and frustrated he did not
enjoy them. In fact, he had not really
enjoyed life in a long time. It had actually
started about a year ago when he had
begun working on this project.

All of a sudden, the meeting came
back to him. Voices screamed out in his
head: “What do you mean that’s not what
you want? That’s what the requirements
say.”

“That’s not what we meant though.
Don’t you people understand anything?”

“We understand what you wrote down
in the statement of work.”

“But did you even bother to ask what
we meant?”

“Well, we thought it was pretty clear.”
“You missed the basic functionality we

were looking for; in fact, this is so bad
we’re going to have to start completely
over. And, by the way, we can’t give you
any slack on the schedule either.”

For Joe, things were definitely getting
ugly! This scenario may sound familiar to
many of you. It happens time after time
on project after project. So, how does it
get like this?

How Does a Project Get Like
This?
Sadly, for the information technology (IT)
industry as well as their customers, studies
show that the majority of systems are
delivered with only about 42 percent to 67
percent of requirements. The Standish
Group has found that even though pro-
jects are being delivered on time and with-
in budget, the statistics for delivering
requirements and meeting customer
expectations are decreasing significantly
[1].

Figure 1 shows a summary of The
Standish Group’s reports concerning pro-
ject success as well as the top 10 most
important elements for successful pro-
jects. The Standish Group stated,

We find that on average only 54
percent, down from 67 percent in
2001, of the originally defined fea-
tures of a project are delivered.
Even more troubling is the realiza-
tion that of those features that are

delivered – a full 45 percent are
NEVER used. [4]

This article does not contain any new
or eye-opening information; much of the
information discussed is well known to
requirements engineering experts. Best
practices in requirements engineering have
been honed since about 1968, and people
have been writing about and teaching
requirements engineering for several
years; however, statistics continue to show
that many IT practitioners and project
managers still are not listening or have not
been exposed to good requirements engi-
neering.

In my positions over the last 20-plus
years as project manager, software/techni-
cal project manager, software developer,
systems engineer, process improvement
engineer, new business proposal manager,
and IT instructor, I have had the opportu-
nity to be both the requirements giver and
the requirements receiver. I have seen
some very good examples of require-

Requirements Engineering So
Things Don’t Get Ugly

Deb Jacobs
Focal Point Associates

Seasoned IT professionals remember those panicked moments when customers say, “That’s not what we’re looking for;”
customer staff couldn’t agree; requirements constantly changed; embarrassment when you couldn’t develop requirements
as promised; requirements are overlooked; estimates are skewed due to lack of understanding; and all the nice to
have’s drove cost and schedule. Requirements engineering is a tough task for both the requirements receiver and the
requirements giver, even if you know exactly what you want. How you see a requirement depends on what vantage
point you’re coming from. We must understand both points of view – giver and receiver – to truly be able to do effec-
tive requirements engineering.

Figure 1: Standish Group Findings Summary

Software Engineering Technology

 



Software Engineering Technology

20 CROSSTALK The Journal of Defense Software Engineering October 2004

ments engineering, and I have seen very
tragic requirements engineering. I have
become passionate about this topic based
on these good and bad requirements expe-
riences.

While working off and on as a process
improvement engineer and process man-
ager over the last several years with vari-
ous organizations, I have had the distinct
opportunity to learn about and use many
exceptional tools. Some of the best tools I
have found include the ever-popular, very
effective Software Engineering Institute’s
Capability Maturity Model® (CMM®)
Integration (CMMI®) [5] and the ISO
[International Organization for
Standardization] 9001.

I have developed processes for accom-
plishing requirements engineering based
on numerous resources throughout my
career. These processes have been devel-
oped based on the IT industry best prac-
tices documented in the CMM and CMMI
as well as my own personal lessons
learned. The techniques and process dis-
cussed in this article are a culmination of
these process development efforts. Each
organization must tailor a process to fit its
particular needs but this process will pro-
vide an idea of the various aspects of
requirements engineering that should be
addressed in a successful requirements
engineering process.

The one thing I have learned well, and
heard many times from other IT profes-
sionals, is that requirements engineering is
tough work! For the requirements giver, it
is very hard to articulate requirements
either in writing or verbally, even if you
know exactly what you want. It is just as
difficult for the requirements receiver to
understand what others are trying to artic-
ulate. We tend to overlook seeing things
from others’ points of view. When engi-
neers and clients start working together
and understanding each other’s points of
view, we will truly be able to do effective
requirements engineering.

The bottom line is this: Development
teams must understand what they are
building, or they cannot build it. This is
only achievable through teamwork –
developer and client teamwork.

Whose Responsibility Is
Understanding Requirements?
To correct this prevalent problem, the IT
industry as a group has to depart from the
them-and-us attitude that permeates the
industry: it must be just us. The finger
pointing must stop, and we must start
® Capability Maturity Model, CMM, and CMMI are regis-

tered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

If Architects Had to Work Like Programmers

Dear Mr. Architect: 
Please design and build me a house. I am not quite sure what I need, so you

should use your discretion. 
My house should have between two and 45 bedrooms. Just make sure the plans

are such that the bedrooms can be easily added or deleted. When you bring the
blueprints to me, I will make the final decision of what I want. Also, bring me the cost
breakdown for each configuration so that I can arbitrarily pick one. 

Keep in mind that the house I ultimately choose must cost less than the one I am
currently living in. Make sure, however, that you correct all the deficiencies that exist
in my current house (the floor of my kitchen vibrates when I walk across it, and the
walls do not have nearly enough insulation in them). 

As you design, also keep in mind that I want to keep yearly maintenance costs
as low as possible. This should mean incorporating extra-cost features like alu-
minum, vinyl, or composite siding. (If you choose not to specify aluminum, be pre-
pared to explain your decision in detail.) Please take care that modern design prac-
tices and the latest materials are used in constructing the house, as I want it to be a
showplace for the most up-to-date ideas and methods. Be alerted, however, that the
kitchen should be designed to accommodate, among other things, my 1952 Gibson
refrigerator. 

To ensure that you are building the correct house for our entire family, make cer-
tain that you contact each of our children, and also our in-laws. My mother-in-law will
have very strong feelings about how the house should be designed, since she visits
us at least once a year. Make sure that you weigh all of these options carefully and
come to the right decision. I, however, retain the right to overrule any choices that
you make. 

Please do not bother me with small details right now. Your job is to develop the
overall plans for the house: Get the big picture. At this time, for example, it is not
appropriate to be choosing the color of the carpet. However, keep in mind that my
wife likes blue. 

Also, do not worry at this time about acquiring the resources to build the house
itself. Your first priority is to develop detailed plans and specifications. Once I approve
these plans, however, I would expect the house to be under roof within 48 hours. 

While you are designing this house specifically for me, keep in mind that sooner
or later I will have to sell it to someone else. It therefore should have appeal to a
wide variety of potential buyers. Please make sure before you finalize the plans that
there is a consensus of the population in my area that they like the features this
house has. 

I advise you to run up and look at my neighbor’s house he constructed last year.
We like it a great deal. It has many features that we would also like in our new home,
particularly the 75-foot swimming pool. With careful engineering, I believe that you
can design this into our new house without impacting the final cost. 

Please prepare a complete set of blueprints. It is not necessary at this time to do
the real design since it will be used only for construction bids. Be advised, however,
that you will be held accountable for any increase of construction costs as a result
of later design changes. 

To be able to use the latest techniques and materials and to be given such free-
dom in your designs is something that cannot happen too often. Contact me as soon
as possible with your complete ideas and plans. 

Respectfully,

J.P. Anonymous

P.S.
My wife has just told me that she disagrees with many of the instructions I have given
you in this letter. It is your responsibility as the architect to resolve these differences. I
have tried in the past and have been unable to accomplish this. If you cannot handle
this responsibility, I will have to find another architect. 

P.P.S. 
Perhaps what I need is not a house at all, but a travel trailer. Please advise me as soon
as possible if this is the case. 



Requirements Engineering So Things Don’t Get Ugly

October 2004 ww.stsc.hill.af.mil 21

working as a team, both the requirements
receivers and requirements givers. The
current trend toward agile/eXtreme pro-
gramming (XP) [6] consists of several
practices that lend themselves to accom-
plishing better requirements engineering.
One significant aspect of agile/XP is
working closely with the client throughout
the development process, which is called
Active Stakeholder Participation.

The following are some ideas that have
worked well for others:
• Bill of rights or stakeholder contract.
• Approval process for all requirements.
• Win-win negotiations meetings that

negotiate requirements based on tech-
nology, environment, time, effort, and
budget constraints.

• Requirements team training; i.e., same
training for all team members.
It is the development team’s responsibil-

ity to learn to balance the stakeholder needs
and expectations. The needs are the identi-
fied requirements and the expectations are
the unidentified requirements. Sometimes
the expectations drive the full understand-
ing of the identified requirements. If you
understand what the customer is looking
for in terms of their expectations, you gain
insight into what they have identified as the
real requirements. It is the customer’s
responsibility to articulate their expectations
so that the development team fully under-
stands what they are looking for in the
resulting product.

For both the development team and the
customer, there must be a clear understand-
ing of who are the decision makers or final
authorities for requirements. This includes
someone who can do the following:
• Add or approve a new requirement.
• Change an existing requirement.
• Accept changes to requirements.
• Direct the developer or their manager.
• Determine if a requirement has or has

not been met.
• Accept requirements as met or not met.

A graphical depiction can help
immensely in defining and keeping track
of who’s who. These should be approved
by the appropriate managers and distrib-
uted to the entire team. If a project has a
communications plan, this is a good place
to include these diagrams.

Why Is Requirements
Engineering So Important?
We, as an industry, cannot afford the con-
sequences of not doing requirements
engineering effectively. The cost of incor-
rect, misunderstood, and not agreed upon
requirements affects all of us in terms of
time, money, and lost opportunities. The

results can be confusion, distrust, misdi-
rection, frustration, lack of quality, higher
cost, overtime, a general lack of under-
standing, and incapability due to being ill-
equipped to handle issues.

Requirements engineering is a means
of providing the functions and related
characteristics of systems by providing the
tools, concepts, and methods that mediate
between the providers of information
technology services and products, and the
users or markets for the services and
products. It is a means of providing the
necessary communications to define need-
ed products. Misunderstood, wrong, or
even slightly skewed requirements propa-
gate as the project moves forward until
you get to the testing phase and scenarios
like those discussed earlier occur.

Like dominoes, once problems start,
they proliferate throughout the project –
requirements problems at the beginning
proliferate through design, development,
and, finally, into test. Many times it gets to
the point where starting over takes less
time than trying to fix what you have
already done. The sidebar “If Architects
Had to Work Like Programmers” illus-
trates this point very well.

What Are Requirements? 
Requirements tell the development team
what the customer is contracting the team
to build. As a whole, they provide a means
of determining the functionality and
attributes of the resulting product. The
Institute of Electrical and Electronics

Engineers [7] defines a requirement as the
following: (1) a condition or capability
needed by a user to solve a problem or
achieve an objective; (2) a condition or
capability that must be met or possessed
by a system or system component to satis-
fy a contract, standard, specification, or
other formally imposed documents; and
(3) a documented representation of a con-
dition or capability as in (1) or (2).

Proven Requirements
Engineering Process
CMMI provides a good foundation for
requirements engineering. It describes
what should be included in an effective
requirements engineering process. CMMI
is based on best practices and lessons
learned from the IT community, including
both government-related and private
industry. There are, in fact, several good
taxonomies and methodologies that have
been defined for requirements engineer-
ing. The requirements engineering process
illustrated in Figure 2 and described in this
article has proven effective on numerous
successful projects and includes these
basic best practices.

There are two major phases that are
essential in defining and controlling require-
ments: Requirements Definition and
Analysis, and Requirements Management.

Requirements Definition and
Analysis 
Requirements Definition and Analysis sets
the stage for all subsequent tasks in devel-

Figure 2: Requirements Engineering Process



Software Engineering Technology

22 CROSSTALK The Journal of Defense Software Engineering October 2004

oping the resulting product. Getting this
right is key to the success of the overall
project. A domino effect will begin here
due to wrong, misunderstood, or slightly
skewed requirements. The rule of thumb I
have learned during my career is approxi-
mately 15 percent of project time should
be spent on identifying, defining, and clar-
ifying the requirements. This will vary
depending upon the life-cycle methodolo-
gy selected but it works well for most pro-
jects.

The following list includes some
examples of typical inputs to the
Requirements Definition and Analysis
task. The inputs will depend upon an
organization’s processes, customer’s
processes, and whether the system being
developed is an upgrade, major refurbish-
ing of an existing system, or a new system.
• Functional and performance

requirements. This information can
be obtained using many methods but
could simply be a list or a verbal
exchange.

• Statement of work. Typically pro-
vided by the customer to the develop-
ment team. Can be a key document
for the customer and development
team.

• Plans. Projects produce numerous
plans that may drive some require-
ments such as the project plan, con-
figuration management plan, logistics
plan, communications plan, develop-
ment plan, or engineering plans.

• Customer information. Various
customer information can be derived
that drives requirements such as cus-
tomer standards, including user inter-
face standards and security standards.

• Problem reports. Many times prob-
lem reports drive major system
upgrades or refurbishment. The orig-
inal problem report contains a good
deal of information pertinent to
understanding requirements.

• Schedule. The schedule may contain
some information needed to under-
stand what the customer is looking

for and the complexity expected,
especially if the customer provides
the overall schedule.

• Work Breakdown Structure
(WBS). This provides information
concerning the breakdown of
requirements if it is developed using a
WBS method that breaks the project
down by product functionality.

• Architecture (physical and func-
tional). For existing systems, this can
be key to understanding requirements
such as communications protocols,
existing functionality, interfaces, etc.
For new systems, the customer may
provide this information in a state-
ment of work and existing system
documentation may help understand
interfacing systems and data.

• Engineering analysis. Many times
one or more trade studies or proto-
types are developed that will help in
understanding requirements.

• Constraints. There are many forms
that constraints can take, including
time, cost, and technical.

• Assumptions. Development team
assumptions will drive the require-
ments and understanding of require-
ments. These should always be docu-
mented and discussed with the cus-
tomer. Conversely, customers have
assumptions that also must be com-
municated.

• Existing system documentation.
Existing system documentation even
when not up to date can provide
invaluable information for under-
standing requirements.

Requirements Identification/
Elicitation
The Requirements Identification/Elici-
tation step provides an in-depth descrip-
tion of the desired resulting product.
Some of the techniques used to identify
and analyze requirements include those
shown in Table 1.

I always recommend that one or more
of these techniques be used to fully
understand and communicate require-
ments throughout the project. The better
the requirements are understood, the
more likely the resulting system will be
effective for the customer. During
Requirements Identification/Elicitation,
several questions need to be addressed
that are shown in Table 2.

There is no simple formula for writ-
ing good, useable requirements; however,
sources for writing good, useable
requirements can be found on the
Internet.

Table 1: Requirements Identification Techniques

 



Requirements Engineering So Things Don’t Get Ugly

October 2004 www.stsc.hill.af.mil 23

Requirements Translation/
Decomposition
Once requirements have been identified,
each requirement must be examined for a
full understanding. Just as important is
getting agreement between all project
stakeholders, especially the identified deci-
sion makers. This step will be where
implied or derived features/issues are
uncovered. This is an iterative process
where the interviewing and brainstorming
sessions discussed in Table 1 are critical
tools. These tools should continue to be
used until all requirements are fully
flushed out and beyond.

Drill down should be used to decom-
pose requirements by starting at the basic
high-level requirement and drilling down
to the details of each requirement only
after each level of detail is fully under-
stood. Hence, only after the high-level
requirements are fully understood and
agreed upon should a development team
move to finer details. Drill down should
be iterative; as more details of higher-level
requirements are understood, they are
drilled down to lower levels for a complete
understanding of what the customer is
looking for. Drill down ensures that time
and money are not wasted on detailing
requirements that are misunderstood from
the beginning.

During this step, requirements should
be associated with a particular subsystem.

Requirements Collation
Grouping and prioritizing requirements
are key to managing them. Requirements
should be grouped for easier understand-
ing, assignment, allocation, and tracking.
The categories should be based upon the
project needs; some suggestions include
the following: function, effect of result,
cause, impact and priority, timing, excep-
tion handling, and performance criteria.
Function is the most prevalent and under-
standable categorization method.

Prioritization should be given to each
requirement to understand its importance.
Prioritization will help determine the
sequence of tasking as well as weed out
the essential versus the desirable versus
the optional requirements.

Each requirement should be examined
to determine any technical, cost, or sched-
ule implications or risks. Any risks associ-
ated with each requirement should be
recorded and tracked using the project’s
risk management process. The impact and
the potential for occurrence will be key
factors in managing risk.

Any impractical and excessive require-
ments should be weeded out since they

drive cost and schedule. Multiple require-
ments pertaining to the same function-
al/performance feature should be exam-
ined to ensure they are coherent and con-
sistent. Finally, requirements should be
allocated to system components for
assignment. This can be done using a
WBS if it has been designed using that
method.

Requirements Traceability
Matrix Generation
A very useful tool in managing require-
ments is a Requirements Traceability
Matrix that is generated with the com-
plete set of requirements. The matrix
provides an authorized record of the
requirements. The tool selected for the
matrix will depend upon the size and
scope of the project. A database is the
optimal method for managing require-
ments but a simple spreadsheet can also
be very effective. Several very good com-
mercial tools are available; see <www.
incose.org/tools/tooltax/reqtrace_
tools.html> [8].

Creation of a homegrown require-
ments database will give users exactly
what they are looking for if the expertise
and time are available. Requirements
tools have many advantages over a simple
listing, including easy search, smooth
requirements management, requirements
change control, requirements metrics col-
lection with minimal effort, and any
needed documentation. The key to
selecting the right tool is to ensure that
you are getting the bang for the buck.

In [4], The Standish Group states,
“Only 5 percent of new and changing
applications will use a requirements man-
agement tool.” That could be why we
have many of our requirements prob-
lems.

Requirements Management 
The requirements management phase
consists of monitoring and controlling
the requirements throughout the remain-
ing development life cycle. Monitoring
and controlling requirements ensures that
the resulting system has all of the agreed
upon or authorized requirements. It helps
to avoid the widespread requirements
epidemic known as requirements creep.

Requirements creep can drive both
cost and schedule significantly. When a
new or upgraded requirement is identi-
fied, the development team must go
through the same process as defined for
the Requirements Definition and
Analysis phase with the appropriate deci-
sion makers.

New Requirement Identification/
Update Requirements
As new requirements are identified or
existing requirements change, they must
be updated in the requirements baseline.
Requirements should be maintained and
baselined using the same type of configu-
ration management controls as software
such as the four elements of configuration
management: identification, change man-
agement (the key), status accounting, and
verification and audit.

Some configuration management tools
have built-in requirements management
features. This ensures the integrity of the

Table 2: Requirements Engineering Process



Software Engineering Technology

24 CROSSTALK The Journal of Defense Software Engineering October 2004

requirements. As requirements change –
and they will – the changes must be con-
trolled.

Requirements Change Control
Either formal or informal change control
methods can be used. Formal change
mechanisms include using a Configuration
Change Board and appropriate formal
authorizations. Less formal methods can
also be effective, especially for smaller
projects.

Whether a formal or informal change
control method is selected, it is important
that the identified decision makers finalize
and authorize all requirements changes.
This includes management of even the
smallest detail since even a slight change
can alter elements of the product. The
changes must be coordinated with all
stakeholders since they may have an
impact on the tasks they are assigned
either directly or indirectly.

Recycle Definition and Analysis
Once the new or upgraded requirements
are approved, they must undergo the same
process as the initial requirements.
• Requirements Translation/Decompo-

sition.
• Requirements Collation.
• Requirements Traceability Matrix

Generation/Update.
It is important to ensure that changes

to requirements do not impact other
requirements. Many times even simple
changes will have a ripple effect on other
requirements. The development team
must be prepared to handle these changes.
The Requirements Traceability Matrix
should always reflect the current require-
ments as they are at any point in the pro-
ject. They will be the authorized record
for the resulting product.

Requirements Volatility Metric
Several metrics will help determine the
status of a project but a key metric is
requirements volatility, which is consid-
ered a key project success indicator. It
indicates the stability of the baselined
requirements.

How much change is too much and at
what stage of the development cycle will it
have a significant impact? There are some
rules of thumb for how much require-
ments change is too much. “A Gentle
Introduction to Software Engineering”
indicates,

The accepted requirements volatility
metric is 1 percent of requirements
per month. If it is much less, one
should ask oneself if the system

would be desirable to its intended
audience. If it is much more than 2
percent a month, development
chaos is all but assured. [9]

Other sources also use that rule of
thumb; however, a study accomplished at
the Colorado State University,
Department of Computer Science con-
cluded the following:

All the results show that changes
have more influence on defect den-
sity when they occur closer to the
end of the testing effort. This tem-
poral dependence is generally
exponential. Changes made very
early can be relatively inconsequen-
tial, but those occurring later can
raise defect density quite signifi-
cantly. [10]

I have found in my experience that fre-
quent changes to requirements are expect-
ed during the early stages of the project;
however, a high volume of changes late in
the development life cycle can have a sig-
nificant impact to functionality, interfaces,
cost, and schedule. The amount of accept-
able requirements change can depend
upon many factors, including the project
phase, development team, requirements
complexity, system complexity, system
size, customer expectations, schedule,
technology, methodologies, tools, etc.

If frequent changes are expected, it
may be beneficial to use either an iterative
build life cycle such as the spiral or incre-
mental build or an agile/XP approach.
There is an upside and a downside to all
methods; the key is to select the method
that is right for that development team, the
customer, the system being developed, and
the environment.

The Bottom Line 
Time after time, projects experience night-
mare scenarios similar to the one described
at the beginning of this article. It is key to
a project’s success in delivering the cus-
tomer’s needed functionality that develop-
ment teams and customers work as a team
to develop effective requirements in order
to develop effective products. If we look at
things from each other’s vantage point, the
chance of success grows by leaps and
bounds. We all look at things differently
based on our background, education,
experience, and simply from where we are
standing at the moment. Open communi-
cations and respect for each other’s posi-
tion is crucial.

There is enough to panic about when
developing a system without the added

stress of misunderstandings. Products
must be delivered with better numbers than
42 percent to 67 percent of the required
functionality. Nobody can afford the con-
sequences of wrong, misunderstood, or
even slightly skewed requirements.

The bottom line is this: Always
remember that what you see is relative to
where you are standing. We must all work
as a team and select the best methodolo-
gies, techniques, and tools that keep things
simple so things do not get ugly.◆

References 
1. The Standish Group. CHAOS: A

Recipe for Success. West Yarmouth,
MA: The Standish Group Inter-
national, Inc., 1999 <www.standish
group.com/sample_research/PDF
pages/chaos1999.pdf>.

2. CHAOS Reports <www.standish
group.com>.

3. The Standish Group. The CHAOS
Report (1994). West Yarmouth, MA:
The Standish Group International,
Inc., 1995.

4. The Standish Group. What Are Your
Requirements? West Yarmouth, MA:
The Standish Group International,
Inc., 2003, Standish Group (based on
2002 CHAOS Report).

5. CMMI Product Team. CMMISM for
Systems Engineering/Software Engi-
neering, Vers. 1.1, Staged Represen-
tation. Pittsburgh, PA: Software
Engineering Institute, Dec. 2001.

6. The Official Agile Modeling (AM) Site
<www.agilemodeling.com>.

7. Institute of Electrical and Electronic
Engineers. IEEE Software Engineer-
ing Standards Collection: 1994
Edition. Washington, DC: IEEE 1994.

8. International Council on Systems
Engineering <www.incose.org>.

9. Cook, David A., Leslie Dupaix, and
Larry Smith. “A Gentle Introduction
to Software Engineering.” Rev. 3.0.
Hill Air Force Base, UT: Software
Technology Support Center, 31 Mar.
1999.

10. Gotel, Orlena C.Z., and Anthony C.W.
Finkelstein. “An Analysis of the
Requirements Traceability Problem.”
London, England: Imperial College of
Science, Technology, and Medicine
<http://csis.pace.edu/~ogotel/
papers/RT_PAP.pdf>.

Additional Reading
1. Nuseibeh, Bashar, and Steve

Easterbrook. “Requirements Engi-
neering: A Road Map.” 3rd Inter-
national Symposium on Requirements
Engineering, Toronto, Canada, 2000

 



Requirements Engineering So Things Don’t Get Ugly

<www.cs.toronto.edu/~sme/papers/
2000/ICSE2000.pdf>.

2. Requirements Working Group of the
International Council on Systems
Engineering. “Characteristics of
Good Requirements.” INCOSE
Symposium.

3. Bernard, Frederick R. Printers’ Ink.
Mar. 1927.

4. Malaiya, Yashwant K., and Jason
Denton. “Requirements Volatility and
Defect Density.” Ft. Collins, CO:
Colorado State University.

5. Bamford, Robert, and Bill Deibler.
SSQC. Requirements Engineering
Workshop <www.ssqc.com>.

6. Ambler, Scott. The Elements of UML
Style. Cambridge University Press, 18
Nov. 2002.

7. Christel, M., and K. Kang. Issues in Re-
quirements Elicitation. Pittsburgh, PA:
Software Engineering Institute, 1992.

8. McConnell, Steve. Construx Software.
<www.stevemcconnell.com> or
<www.construx.com>.

9. Robertson, Suzanne, and James
Robertson. Mastering the Require-
ments Process. Addison-Wesley, 1999.

10. Hooks, Ivy. Writing Good Require-
ments. Proc. of the Third Inter-
national Symposium of the NCOSE.

October 2004 www.stsc.hill.af.mil 25

About the Author

Deb Jacobs is a profes-
sional consultant for
Focal Point Associates
specializing in process
improvement and project
management. She pro-

vides support to organizations in train-
ing, process improvement consulting,
project management consulting, software
engineering consulting, and proposal
development. Jacobs has more than 25
years experience in system/software
engineering, project management,
process improvement, and proposal
development. Her notable successes
include leading a successful Capability
Maturity Model® (CMM®) Level 3 effort
in one year, successfully reorganizing
struggling projects, mentoring new man-
agers, and gaining new business for com-
panies through proposal development.

She is former SPINOUT editor/origina-
tor; former Computer Emergency
Response Team conference chairperson,
infotec deputy Software Tracks chair, and
a Software Engineering Institute CMM
IntegrationSM contributor. She is current-
ly working on a book to help organiza-
tions successfully achieve process maturi-
ty at minimal costs. Jacobs has a Bachelor
of Science in computer science.

Focal Point Associates

c/o Priority Solutions

1508 JF Kennedy DR STE 100

Bellevue, NE 68005

Phone: (402) 932-5349

(402) 292-8660

E-mail: djacobsfpa@aol.com 

djacobs@prioritytech.com

djacobs@sessolutions.com

Project Management Institute
www.pmi.org
The Project Management Institute (PMI) is a not-for-profit,
project-management professional association with more than
100,000 members in 125 countries. PMI publishes “A Guide to
the Project Management Body of Knowledge,” offers Project
Management Professional certification, and maintains ISO
9001 certification in Quality Management Systems.

Software Program Managers Network
www.spmn.com
The Software Program Managers Network (SPMN) is spon-
sored by the deputy under secretary of defense for Science and
Technology, Software Intensive Systems Directorate. It seeks out
proven industry and government software best practices and
conveys them to managers of large-scale Department of Defense
software-intensive acquisition programs. The SPMN provides
consulting, on-site program assessments, project risk assess-
ments, software tools, guidebooks, and hands-on training.

NASA Independent Verification and
Validation Facility
www.ivv.nasa.gov
The NASA Independent Verification and Validation (IV&V)
Facility was established in 1993 to provide the highest achievable
levels of safety and cost-effectiveness for mission critical soft-
ware. The IV&V Facility’s efforts have contributed to the

improved safety record of NASA since its inception. The IV&V
Facility houses more than 150 full-time employees and more
than 20 in-house partners and contractors.

Practical Software and Systems
Measurement
www.psmsc.com
Practical Software and Systems Measurement (PSM) is spon-
sored by the Department of Defense and the U.S. Army. PSM is
an information-driven measurement process that addresses the
unique technical and business goals of an organization by pro-
viding objective information needed to successfully meet cost,
schedule, and technical objectives.

International Society of Parametric
Analysts
www.ispa-cost.org
The International Society of Parametric Analysts (ISPA) is a pro-
fessional society dedicated to the improvement and promotion
of parametric cost modeling techniques and methodologies and
the related fields of risk analysis, econometrics, design-to-cost,
technology forecasting, and management. ISPA provides a
forum that encourages the professional development of its mem-
bers through the interchange of ideas and perspectives. ISPA
members represent government agencies, universities, and near-
ly 200 organizations in 12 countries.

Vol. 2, 1993. Updated Sept 2003.
11. Wiegers, Karl. Writing Good Require-

ments. 2nd ed. Microsoft Press, 26
Feb. 2003.

12. KPMG. “What Went Wrong? Unsuc-
cessful Information Technology
Projects.” KPMG Study <www.
kpmg.ca>.

WEB SITES


